Prime splittings of determinantal ideals
نویسندگان
چکیده
منابع مشابه
Prime Ideals in Certain Quantum Determinantal Rings
The ideal I 1 generated by the 2 2 quantum minors in the coordinate algebra of quantum matrices, O q (M m;n (k)), is investigated. Analogues of the First and Second Fundamental Theorems of Invariant Theory are proved. In particular, it is shown that I 1 is a completely prime ideal, that is, O q (M m;n (k))=I 1 is an integral domain, and that O q (M m;n (k))=I 1 is the ring of coinvariants of a ...
متن کاملSplittings of Monomial Ideals
We provide some new conditions under which the graded Betti numbers of a monomial ideal can be computed in terms of the graded Betti numbers of smaller ideals, thus complementing Eliahou and Kervaire’s splitting approach. As applications, we show that edge ideals of graphs are splittable, and we provide an iterative method for computing the Betti numbers of the cover ideals of Cohen-Macaulay bi...
متن کاملQuantum Determinantal Ideals
Introduction. Fix a base field k. The quantized coordinate ring of n×n matrices over k, denoted by q(Mn(k)), is a deformation of the classical coordinate ring of n×n matrices, (Mn(k)). As such, it is a k-algebra generated by n2 indeterminates Xij , for 1 ≤ i,j ≤ n, subject to relations which we state in (1.1). Here, q is a nonzero element of the field k. When q = 1, we recover (Mn(k)), which is...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Algebra
سال: 2018
ISSN: 0092-7872,1532-4125
DOI: 10.1080/00927872.2018.1427241